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Fig. 1: Layout of the soft-X-ray tomography beamline and end 
station

Development of Soft-X-ray Tomography for  
Biomedical Research

T he soft-X-ray tomography (SXT) beamline is the 
first beamline in the second phase of construction 

of Taiwan Photon Source (TPS). This beamline, cover-
ing the energy range of 200–3,000 eV, is dedicated 
to a transmission full-field microscope to image 3D 
frozen-hydrated whole cells and tissue. Based on the 
organic composition of subcellular constituents, the 
energy in the water window, which is between the 
K-edge absorptions of carbon (284 eV) and oxygen 
(543 eV), can derive a high-absorption natural con-
trast of a biological sample from the water environ-
ment without staining. The depth of penetration of a 
biological specimen in the energy range of the water 
window is about 10 µm, which indicates that a native 
3D cell can be imaged directly without sectioning.1,2 
To increase the probing depth, we can increase the 
X-ray energy to 3,000 eV. Another window of energy 
range 2,000–3,000 eV is consequently designed for 
the phase contrast of a biological sample. High ener-
gies can expand the depth of the focus and allow im-
aging of the tissue sample of thickness up to 50 µm. 

Located at TPS port 24, the SXT beamline adopted 
a horizontal acceptance 1.2 mrad from the bend-
ing-magnet source. The photon beam from this 
source is collected with a pair of Kirkpatrick-Baez 
(KB) mirrors – a horizontal focusing mirror (HFM) and 
a vertical focusing mirror (VFM), to focus the beam 
horizontally on the position of the exit slit and verti-
cally on the position of the entrance slit. To meet the 

demand for an endstation of full-field transmission 
soft-X-ray tomography, the optics of a plane-grating 
monochromator with varied line spacing (VLS PGM) 
has been adopted to provide a virtual source with a 
fixed position for a condenser in a X-ray microscope.3 
Three gratings are planned to cover the entire energy 
range, 200–3,000 eV. The last mirror, a vertical refo-
cusing mirror (VRFM), refocuses the photons from 
a virtual image of the VLS PGM onto the position of 
the exit slit. Figure 1 displays a basic concept of the 
beamline and microscope. Figure 2 shows a photo-
graph of the HFM and VFM that are located upstream 
of the beamline at 26 m and 28 m from the source, 
respectively. The photon flux at 520 eV is about 
2.82 x 1011 photons s-1. The microscope is designed 
with a combination of a capillary condenser and an 
objective Fresnel zone plate as the object lens.2 The 
light from the virtual source at the exit-slit position is 
collected and focused with a capillary condenser (CC) 
on the sample position. The light transmitted from 
the sample is refocused with a zone plate (ZP) onto 
the position of a charge-coupled device (CCD). This 
microscope is designed to include a low-energy re-
gion, 200–1,200 eV, and a high-energy region, 1,200–
3,000 eV. The microscope in the low-energy region 
can observe a 3D structure of nearly native cells; the 
magnification of an image is 1400 for energy in the 
water window. The microscope in the high-energy 
region can observe the 3D tissue structure; the mag-
nification of image is 500 for energy 3,000 eV. Two 
objective zone plates with widths 25 and 40 nm of 
the outermost zone are provided. A spatial resolution 
15–30 nm is expected to be achieved for 2D imaging 
and 50 nm routinely for 3D tomography. SXT can fill 
the gap between a fluorescence microscope and an 

Fig. 2: HFM and VFM chambers
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electron microscope in biological investigations. As 
the location of functional proteins in a cell cannot be 
identified directly from SXT images, it is important to 
have a fluorescence microscope to complement SXT 
to image a cell in a region of interest.4-6 Herein, we 
adopted a high-resolution fluorescence structured- il-
lumination microscope (SIM) that is correlated online 
with the SXT to derive from a biological specimen the 
desired structural and functional information. The 
light path of the fluorescence SIM is 70º off the beam 
of the SXT. Figure 3 shows a photograph of a cor-
relation of SXT and fluorescence SIM; that correlative 
system is inside the vacuum chamber. To prevent radi-
ation damage, a sample and its environment should 
be kept under cryogenic conditions, for which reason 
samples must be prepared by quick freezing using 
either a plunge freezer or a high-pressure freezer to 
avoid the formation of ice crystals. Some biomedical 
subjects can be implemented, including an investi-
gation of molecular events within cells, changes in 
cellular architecture, interaction or communication 
between cells, interaction between host and microor-
ganisms, and structural changes of tissue. The con-

struction of the beamline and end station in energy 
range 200–1,200 eV is complete; the commissioning 
began from the end of 2017. (Reported by Lee-Jene 
Lai ) 
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Fig. 3: Fluorescence SIM correlation with SXT inside the SXT chamber

The Installation of the Instrument for Bragg Coher-
ent Diffraction Imaging 

A real-space image is more interesting than a 
one-dimensional reduction scattering profile with 

a model fitting curve. However, the resolution of the 
image is subject to the optics for the traditional X-ray 
microscopies. The lensless imaging technique, coher-
ent X-ray diffraction imaging (CXDI), can overcome 
the resolution limit affected by the optics, but its de-
velopment is limited by the coherent X-ray beam qual-

ity. The implementation of coherent X-ray scattering 
techniques has been initiated since high brightness 
synchrotron sources started producing highly coher-
ent X-ray beams. The Coherent X-ray Scattering (CXS) 
Beamline, TPS 25A, is one of the dedicated beamlines 
designed for the coherent X-ray scattering experi-
ments and it has been opened to users. In traditional 
microscopies, the optics is used to obtain the images. 


